H-Index
34
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
call: +1.631.629.4327
Mon-Fri 10 am - 2 pm EST

Logo



eISSN: 2329-0358

Evaluation of Graft Effluent High Mobility Group Box-1 (HMGB-1) for Prediction of Outcome After Liver Transplantation

Philipp Houben, Ralph Hohenberger, Kenya Yamanaka, Markus W. Büchler, Peter Schemmer

(Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany)

Ann Transplant 2018; 23:475-480

DOI: 10.12659/AOT.909165

Published: 2018-07-13


BACKGROUND: Pre-transplant assessment of the graft for liver transplantation is crucial. Based on experimental data, this study was designed to assess both nuclear high mobility group box-1 (HMGB-1) protein and arginine-specific proteolytic activity (ASPA) in the graft effluent.
MATERIAL AND METHODS: In a non-interventional trial, both HMGB-1 and ASPA were measured in the effluent of 30 liver grafts after cold storage before transplantation. Values of HMGB-1 and ASPA levels were compared with established prognostic parameters such as the donor risk index, balance of risk score, and Donor-Model for End-Stage Liver Disease.
RESULTS: The early allograft dysfunction (EAD) was best predicted by recipient age (p=0.026) and HMGB-1 (p=0.031). HMGB -1 thresholds indicated the likelihood for initial non-function (1608 ng/ml, p=0.004) and EAD (580 ng/ml, p=0.017). The multivariate binary regression analysis showed a 21-fold higher (95% CI: 1.6–284.5, p=0.022) risk for EAD in cases with levels exceeding 580 ng/ml. The ASPA was lower in cases of initial non-function (p=0.028) but did not correlate with the rate of EAD (p=0.4).
CONCLUSIONS: This study demonstrates the feasibility of HMGB-1 detection in the graft effluent after cold storage. Along with conventional prognostic scores, it may be helpful to predict the early fate of a graft in human liver transplantation.

Keywords: Immunity, Innate, Liver Transplantation, Organ Preservation



Back